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Abstract
The question of finding solutions to a given implicit differential equation
(IDE) is an important one, in part because it appears very naturally in several
problems in physics, engineering and many other fields. In this work, we show
how to reduce a given analytic IDE to an analytic IDE of locally constant
rank. This can be done by using some fundamental results on subanalytic
subsets and desingularization of closed subanalytic subsets. An example from
nonholonomic mechanics is studied using these methods.

PACS numbers: 02.30.Hq, 02.60.−x, 45.20.Jj
Mathematics Subject Classification: 14P15, 32B20, 65L80, 70H45, 70F25

1. Introduction

1.1. Physical motivation

Implicit differential equations (IDE) φ(x, ẋ) = 0 are very common in science, the case of
an ODE ẋ = f (x) being the simplest particular case. Euler–Lagrange equations for a given
Lagrangian [1–3], Lagrange–D’Alembert equations for a nonholonomic system and their
reduced versions Lagrange–D’Alembert–Poincaré equations [4–10] are some of the examples
from mechanics. We are not going to give a list of relevant references of IDE appearing in
several fields. Instead, we are going to describe next an example of IDE which is important
for both classical and quantum mechanics, as physical motivation.

It is shown in [11] that several questions in the Dirac–Bergman theory of constraints, in
quantum mechanics, can be reduced to solving an IDE of the type

iẋω(x) = α(x), (1.1)
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where ω ∈ �2(M) is a closed 2-form and α ∈ �1(M) is a closed 1-form on a Banach manifold
M. This kind of geometric formulation of the Dirac–Bergman theory also has a meaning in
other fields, like classical mechanics, which is more important for the present paper. Let Q be
the configuration space for a mechanical system and assume for simplicity that Q is a vector
space. Let L : T Q → R be a given Lagrangian, degenerate or not. It can be easily shown that
Euler–Lagrange equations can be rewritten as follows:

iẋω(x) = dh(x), (1.2)

where x ∈ Q × Q × Q, say x = (q, v, p), ω ∈ �2(Q × Q × Q),ω = dq ∧ dp,
h = pv − L(q, v). Here the contraction 〈p, v〉 is denoted simply by pv. It is clear that
(1.2) is of the form (1.1).

To solve an IDE like (1.1) an algorithm, called the Gotay–Nester algorithm, is introduced
in [11]. The presymplectic form ω plays an important role in describing this algorithm and in
making it easy to apply to examples, specially in infinite-dimensional cases. However, some
basic aspects of the algorithm are not necessarily related to the presymplectic structure and
can be applied to more general IDE of the type treated in the present paper, namely

a(x)ẋ = f (x), (1.3)

defined at the beginning of section 2. Let us describe those basic aspects for a system like
(1.1), assuming for simplicity that M is a vector space of dimension n. Let x(t) be a given
solution to (1.1), then, for each t, the linear algebraic system

ivω(x) = α(x), (1.4)

has at least one solution, namely, v(t) = ẋ(t). This implies that, for each t, x(t) must belong
to the subset

M1 = {x ∈ M : ivω(x) = α(x) has at least one solution v ∈ TxM}.
In [11], this subset is described by an equation in terms of the presymplectic form ω, but we
do not need it here to describe the basic aspects of the algorithm, as we have said before.
Assume, as in [11], that M1 is a submanifold of M. Since x(t) ∈ M1 for all t, we must have
that ẋ(t) ∈ Tx(t)M1 for all t. This implies that, for each t, x(t) must belong to the subset

M2 = {x ∈ M1 : ivω(x) = α(x) has at least one solution v ∈ TxM1}.
We can continue in a similar way and define Mk recursively as follows:

Mk+1 = {x ∈ Mk : ivω(x) = α(x) has at least one solution v ∈ TxMk},
under the assumption that Mk is a submanifold for k = 1, 2, . . . . Since M is finite dimensional
the sequence M ⊇ M1 ⊇ · · · ⊇ Mq must stabilize, that is Mq = Mq+p, for p ∈ N. Under the
assumption that the map

ω� : TxMq → T ∗
x M,

given by ω�(x)(v) = ω(x)(v, ), has locally constant rank for x in the final constraint manifold
Mq , existence of local solutions to (1.1) is guaranteed. In fact, Mq is given, in local coordinates
(x1, . . . , xn) in M centred at a given point x0 ∈ Mq , by equations xc+1 = 0, . . . , xn = 0, where
c is the dimension of Mq . Using standard arguments we can prove that, after a permutation
of indices if necessary, the local solutions of the system can be described as follows. Choose
functions x1(t), . . . , xr (t) where r = dim ker ω(x)�|TxMq and then solve (1.1) uniquely for
xr+1(t), . . . , xc(t).

The system (1.1) restricted to Mq , as described above, is an example of what we call in
this paper an IDE of locally constant rank. It is clear that the basic ideas described above can
also be used to solve a system like (1.3). More precisely, we define

M1 = {x ∈ M : a(x)ẋ = f (x) has at least one solution v ∈ TxM},
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and then we define recursively Mk in a similar way as we did before for equation (1.1). If
the linear map a(x) has locally constant rank on the final constraint manifold Mq we can
solve locally equation (1.3) in a similar way as we did with equation (1.1). However, in this
paper we want to study those cases in which the assumption that each Mk is a submanifold
made at each step k in the previous algorithm may not be satisfied. For this purpose, we must
choose a new algorithm, which makes sense only for real analytic data. The description of this
new algorithm is given in section 2, but here we shall give an approximate idea of it. Under
the assumption that a and f are real analytic, in the first step of the new algorithm we obtain
a closed analytic subset, that is, a subset defined by analytic equations, M0 ⊂ M , which is
essentially like the subset M1 described above, but now we do not need to assume that it
is a submanifold. Instead, we use a desingularization π0 : M1 → M which, by definition,
is a proper analytic map whose image is M0 while M1 is an analytic manifold having the
same dimension as M0. Now we pull back the system to M1 in an appropriate way using
π0 to obtain a system of the same kind in M1. We repeat the process and this way we
obtain the new algorithm to solve system (1.3). If we apply the new algorithm to solve (1.1)
in finite dimensions and with analytic data, under the assumption that Mk is a submanifold
for each k, we obtain essentially the same results obtained by applying the Gotay–Nester
algorithm.

1.2. Related works and technical background

General IDE of the type φ(x, ẋ) = 0 can be easily reduced to those of the type (1.3), as
explained in section 2, at the cost of adding new variables. This is the strategy adopted in the
present work. Also the basic algorithm to solve IDE like (1.1) or (1.3) explained above can
be applied directly, in principle, to an IDE of the type φ(x, ẋ) = 0 in an obvious way. In fact,
we can formally define M1 = {x ∈ M : φ(x, v) = 0, has at least a solution v ∈ TxM} and
Mk+1 = {x ∈ Mk : φ(x, v) = 0, has at least a solution v ∈ TxMk} and so on.

However, the assumption that each Mk is a submanifold seems to be too restrictive
in the general case of an IDE of the type φ(x, ẋ) = 0. This difficulty can be partly
overcome by working in a neighbourhood of a point, rather than globally. Then there
is the possibility of applying, somehow, the subimmersion theorem to show that Mk is a
submanifold in a neighbourhood of the chosen point. Ideas closely related to this program
have been implemented successfully in several papers, where the possibility of applying the
subimmersion theorem is assumed whenever it is needed. See for instance [12, 13] and
references therein. In those works those systems to which this kind of method can be applied
are called differential algebraic equations (DAE). To the best of our knowledge, the singular
cases where the subimmersion theorem cannot be applied have not been systematically and
fully studied, locally or globally, in the existing literature.

There are specific studies for certain classes of systems. For instance, an interesting
treatment of IDE given by complex polynomial relations has been realized in [14] where an
algorithm using complex algebraic geometry and its implementation using computer algebra
systems is described.

In the present paper, we choose to work with the class of IDE with real analytic data. This
leads us immediately to the realm of semianalytic and subanalytic sets, which are fundamental
objects for the present paper. A subset X of a real analytic manifold M is semianalytic if
each a ∈ M has a neighbourhood U ⊆ M such that U ∩ X is a finite union of subsets of
U defined by a finite collection of equalities f (x) = 0 and inequalities g(x) > 0, where f

and g are real analytic functions. If in the previous definition real analytic is replaced by real
algebraic one obtains the definition of semialgebraic set. The Tarski–Seidenberg theorem
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says that a semialgebraic subset of R
n is projected via the natural projection R

n → R
n−1 ×{0}

onto a semialgebraic subset of R
n−1 × {0}. This important theorem does not hold true if

semialgebraic is replaced by semianalytic. This has led to defining the notion of subanalytic
subset. A subset X of an analytic manifold M is subanalytic if for each point a ∈ M there is a
neighbourhood U of a such that U ∩ X is the projection of a relatively compact semianalytic
set. A theorem, analogous to the Tarski–Seidenberg theorem, holds true for subanalytic sets.
This makes the theory of subanalytic subsets less rigid than the theory of semianalytic sets.
For instance, the desingularization theorem used in our algorithm as described in section 2
is proved within the theory of subanalytic sets. In fact, the proof of our main theorems in
section 5 relies on that theory. Of special importance for us are the subanalytic subsets of
dimension 1. This is because they are essentially curves which will be the possible solutions
to an IDE with analytic data. A useful result is that any subanalytic subset of dimension 1
is semianalytic. Our main reference for the theory of subanalytic subsets is [15]. See more
references below in this introduction.

As another important class of examples related to the present work we mention that
control systems in the category of subanalytic sets have been recently studied in [16], where
desingularization techniques have been used. In the present work we also work in the category
of subanalytic sets and we also use desingularization methods, but from the point of view of
IDE, which in a sense is dual to the point of view of control theory. In fact, a control system is,
roughly, a vector field depending on a parameter or, equivalently, a family of vector fields or,
more generally, a family of local vector fields. On the other hand, as we will see, an IDE gives,
after desingularizing it, also a family of vector fields, but defined implicitly. Finally, we remark
that in some interesting examples in mechanics a global desingularization is not needed, and
a blowing-up centred at certain submanifolds is enough, after all, a desingularization can be
built as a composition of a finite sequence of local blowing-ups, see [15], p 30. See [17] for
an interesting example in stability theory in mechanics.

As we have said in the previous paragraph, desingularization of closed analytic subsets
plays an important role in the present work, although we are not going to study any
desingularization technique here. Rather, what we want to show is that the problem of
solving a given analytic IDE can be decomposed into two problems: (1) desingularize certain
singular analytic submanifolds that may appear on applying the algorithm and (2) solve an
analytic IDE of locally constant rank. Each problem has its own difficulties. Our main result
shows how to reduce a given real analytic IDE to a real analytic IDE of locally constant
rank, defined in section 2, which is considered the simplest case in this paper. Working in
the analytic category is justified because IDE representing several important examples from
mechanics, control theory and other fields, as we have mentioned before, are given by real
analytic functions. An important point is proving that the desingularized system is equivalent
to the given system. This is a technical point described in section 5, using several results
from the theory of subanalytic sets. A key point is the definition of an appropriate class of
curves, called as-curve, which, roughly speaking, include all the analytic curves whose graph
is semianalytic.

Some references on desingularization and subanalytic subsets are the following. The
fundamental theorem of Hironaka [18], whose proof was simplified and computationally
implemented in subsequent works [19, 20], is an example of a desingularization procedure,
in this case desingularization of certain algebraic varieties. Another fundamental theorem
on desingularization was proven by Bierstone and Milman [21], which actually includes
Hironaka’s theorem. See also [22]. In the present work we are going to use some general
results from the theory of subanalytic sets [15]. The only main result on desingularization that
we use is the theorem of Hironaka on desingularization of closed subanalytic subsets [23]. In
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fact, the theorem on desingularization of closed analytic subsets, theorem 5.1 of Bierstone and
Milman in [15], is enough for our purposes.

In section 2, we explain some basic facts about IDE. In section 3, we describe our
algorithm. In section 5, we prove our main results. In section 4, we give a concrete example
from nonholonomic mechanics, namely a symmetric ball rolling without sliding or spinning.
The final desingularized manifold is shown to be S2 × S1 on which the equation governing
the motion is a simple ODE, whose solutions can be precisely described.

2. Implicit differential equations

2.1. Basic notation

Let M be a given manifold of dimension n and F a vector space of dimension m. Let
a : T M → F be a smooth map such that a(x, ẋ) ≡ a(x)ẋ is linear in ẋ. Let f : M → F be a
given smooth map. We will consider IDE of the type

a(x)ẋ = f (x). (2.1)

By introducing the trivial vector bundle M × F we can think of a as representing a vector
bundle map

a : T M → M × F

and of f as being a section of M × F . Then, for each x ∈ M,a(x) is a linear map depending
smoothly on x from the tangent space TxM into the fibre (x, F ) of the trivial bundle.

More generally, we may consider a general vector bundle with base M, say π : F → M ,
and an IDE like (2.1) where now a : T M → F is a vector bundle map and f is a section
of F. This kind of generalization is important to describe a sufficiently wide class of IDE.
However, in the present paper we shall describe only the trivial bundle case, for simplicity,
and also because it already contains the essential facts. The general case can be treated in an
essentially similar way. In this paper, the manifold M is called the domain and the space, or
more generally, vector bundle F, is called the range of the IDE.

Given an IDE of the type (2.1) one has immediately a linear algebraic system (LAS) for
each x ∈ M , depending smoothly on x, where the unknown is the vector ẋ, based at x, for
each x ∈ M . We will call it the LAS associated with the given IDE.

2.2. IDE of locally constant rank

Recall that the rank of a linear map A : E → G, denoted as rank A, is the dimension of its
image, dim Im A. In finite dimensions we may choose a basis in E and also in G and denote
by [A] the matrix representing A with respect to those basis. Then rank A = rank[A], where
rank[A] is the maximum number of linearly independent columns of A. For given g ∈ G

we will call 〈Im A, g〉 the linear space generated by Im A and g. Also, we will call [A, g]
the matrix whose first columns are the columns of [A] and the last column is the coordinate
expression of g in the basis chosen in G. By definition rank[A, g] is the maximum number of
linearly independent columns of [A, g]. We have obviously rank[A, g] = dim〈Im A, g〉.

Assume that the LAS associated with (2.1) has solution ẋ for each x ∈ M . Then we
may think of (2.1) as defining an affine distribution, generally singular, on M. If, in addition,
rank a(x) = rank[a(x), f (x)] is locally constant, that is, it is constant on each connected
component of M, then the IDE is called an IDE of locally constant rank. This is equivalent
to saying that the corresponding affine distribution has constant rank on each connected
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component of M. For instance, if m = n and a(x) is invertible for all x ∈ M then (2.1) is
equivalent to an ODE,

ẋ = a(x)−1f (x), (2.2)

and the rank of the affine distribution is 0 in this case.
The case of an IDE of locally constant rank is the simplest case in our context and our

main result, in section 5, shows that a given analytic IDE can be reduced to an IDE of locally
constant rank in an obvious way.

2.3. Reduction of a general IDE to an IDE of the type (2.1)

It is easy to see that, from a general point of view, IDE of the type

φ(x, ẋ) = 0,

where the fibre-preserving map φ : T M → F may be nonlinear in ẋ, are not more general
than (2.1).

In fact, let us assume first, for simplicity, that M is an open subset of a finite-dimensional
vector space E. An IDE of the type

φ(x, ẋ) = 0

can be rewritten in the form (2.1) with domain M × E and range E × F as follows:

ẋ = u 0 = φ(x, u),

which has the form (2.1) with

a(x, u) =
[
I 0
0 0

]
, f (x, u) =

[
u

φ(x, u)

]
.

The case of a general manifold M and a fibre-preserving map φ : T M → F , where F is a
vector bundle with base M, can also be reduced to the form (2.1) by an essentially similar
procedure, using a geometric construction involving pull-backs of bundles. We will not need
to deal with this more general type of IDE.

Remark

(i) We must remark that working with IDE written in the form (2.1) is an important ingredient
of our algorithm. This is in part because this form is preserved and the space F remains
the same (or the vector bundle is replaced by a pull-back vector bundle) at each stage of
the algorithm. This simplifies matters as will become evident later.

(ii) The system (2.1) can be written equivalently as follows:

a(x)ẋ = ṫf (x) ṫ = 1,

where t = t (s). The first equation of this system can be written equivalently as follows:

b(y)ẏ = 0 (2.3)

where y = (x, t), b(y) ∈ L(T (M × R), F ), b(y) = [a(x),−f (x)].

Of course (2.3) is an IDE whose associated LAS has a solution for each y, but it does not
seem that questions like reachability for (2.1) could be easily reduced to easily solvable
corresponding questions for (2.3). In other words, this kind of transformation of the system
does not necessarily really simplifies the problems related to a given IDE. On the other hand,
systems like (2.3) are interesting by themselves and are related to Pfaffian systems [24].
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2.4. Some notation and operations with IDE

It will be convenient to denote sometimes (a, f ) the IDE (2.1), from now on. Let (a, f ) be a
given IDE, say

a : T M → F, f : M → F.

Let N ⊆ M be a given submanifold. The restriction (a, f )|N , also written as (a|N, f |N),
of (a, f ) to N is defined naturally by the conditions (a|N)(x)(x, ẋ) = a(x)(x, ẋ) and
(f |N)(x) = f (x), for all (x, ẋ) ∈ T N .

Let us remark that the notion of restriction (a, f )|N makes sense also in the case where
N is any subset of M. In fact, we only need to give a meaning to the notion of a tangent
vector (x0, ẋ) at a point x0 ∈ N . It is simply the tangent vector in Tx0M to a smooth curve
x(t), t ∈ (−δ, δ) in M such that x(t) ∈ N , for all t ∈ (−δ, δ) and x(0) = x0.

Let ϕ : N → M be a given smooth map. Then the pull-back ϕ∗(a, f ) = (ϕ∗a, ϕ∗f )

is the IDE with domain N and range F defined by ϕ∗a(y)(y, ẏ) = a(ϕ(y))(T ϕ(y, ẏ)) and
ϕ∗f (y) = f (ϕ(y))

If g : F → G is a linear map we define the projection of (a, f ) by g as being the
IDE with domain M and range G defined by (g ◦ a, g ◦ f ). More precisely, we have
(g ◦ a)(x)(x, ẋ) = g(a(x)(x, ẋ)) and (g ◦ f )(x) = g(f (x)), for all (x, ẋ) ∈ T M .

One can define operations like the direct sum ⊕ or tensor product ⊗ of IDE in a natural
way. For instance, if (ai, fi), i = 1, 2, are given IDE with domain M and range
Fi, i = 1, 2, then we can define the direct sum (a1, f1)⊕ (a2, f2) ≡ (a1 ⊕ a2, f1 ⊕ f2) as
an IDE with domain M and range F1 ⊕ F2 by (a1 ⊕ a2)(x)ẋ = a1(x)ẋ ⊕ a2(x)ẋ, and
(f1 ⊕ f2)(x) = f1(x) ⊕ f2(x), for all (x, ẋ) ∈ T M . The tensor product is also defined in a
natural way.

Using operations like the ones described above, one may sometimes simplify a given IDE.
For instance, working in coordinates in F, say (y1, y2, . . . , ym), if some of the equations, say
corresponding to y1, are a linear consequence of the others then it can be eliminated by using
a projection g(y1, y2, . . . , ym) = (y2, . . . , ym), and the resulting system will be equivalent to
the given one. We have the following result, whose proof is not difficult.

Theorem 2.1. Let (a, f ) be a given IDE with domain M and range F and let N ⊆ M be
a given submanifold defined regularly by equations ϕ = 0, where ϕ : M → H and H is a
finite-dimensional vector space. Then the restriction (a, f )|N has the same solutions as the
IDE (a ⊕ 0, f ⊕ ϕ) with domain M and range F ⊕ H . It also has the same solutions as the
IDE (a ⊕ Dϕ ⊕ 0, f ⊕ 0 ⊕ ϕ) with domain M and range F ⊕ H ⊕ H . Here Dϕ : T M → H

is defined by Dϕ = p2 ◦ T ϕ, where p2 : H × H → H is the projection on the second factor
and T H ≡ H × H .

Remark

(a) This theorem is simple but useful. For instance, it allows sometimes replacement of
a given IDE by an equivalent IDE whose domain and range are vector spaces, which
sometimes simplifies practical calculations avoiding the usage of local charts whenever it
is convenient. More precisely, let a given IDE (a, f ) having domain M ⊆ L be embedded
in the vector space L and defined regularly by an equation ϕ = 0, where ϕ : L → H , and
let a be defined by a restriction a = A|T M , where A : T L → F . Then, according to
theorem 2.1, one can work equivalently with the system (A ⊕ 0, f ⊕ ϕ), whose domain
and range are vector spaces.

(b) One can define a category whose objects are of the type (M,F, (a, f )), where M is a
manifold, F is a vector bundle over M and (a, f ) is an IDE with domain M and range



10982 H Cendra and M Etchechoury

F. A morphism ϕ : (M,F, (a, f )) → (N,G, (b, g)) is given by a map ϕd : M → N

and a vector bundle map ϕr : F → G over ϕd such that, for any (x, ẋ) ∈ M , we have
ϕr(a(x)ẋ) = b(y)ẏ, and g(y) = ϕr(f (x)), where (y, ẏ) = T ϕd(x, ẋ). However, we will
not use the categorical context in this paper.

3. Desingularization

The hypothesis that Mk is a submanifold at each stage of the basic algorithm described in
section 1 is too restrictive as it is not satisfied for many examples of interest. We are going
to show that in order to overcome part of these limitations, and at the cost of working in
the subanalytic category rather than the C∞ category, one can use results from real analytic
desingularization theory. This is possible thanks to the theory of semianalytic and subanalytic
sets developed originally by Lojasiewicz [25–27]. Important results in this field and systematic
expositions using techniques which are simpler than the original ones are due to Gabrielov
[28], Hironaka [23], Hardt [29, 30], Bierstone and Milman [15], Sussmann [31] and others.
Our main reference will be [15], a very readable exposition of important points of the theory
of subanalytic sets.

For the rest of this paper manifolds and maps will be real analytic, unless otherwise
specified. For instance, if (a, f ) is a given IDE with domain M then M will be a real analytic
manifold and a, f will be real analytic maps.

Definition 3.1. Let M be a real analytic manifold and let X be a closed subanalytic subset of
M. A desingularization of X is a real proper analytic map f : N → M such that f (N) = X,
where N is a real analytic manifold of the same dimension as X.

This is a relatively weak notion of desingularization, but it is enough for our purposes.
Existence of desingularizations f : N → M is guaranteed by the following theorem of
Hironaka, see [15, 31] and references therein.

Theorem 3.2. Let M be a real analytic manifold and let X be a closed subanalytic subset.
Then there is a desingularization f : N → M of X.

Desingularization results that include those of Hironaka have been recently proved in
Bierstone and Milman [21].

In fact, in the present paper we only need the following weaker desingularization result,
which is theorem 5.1 in [15],

Theorem 3.3. Let M be a real analytic manifold and let X be a closed analytic subset. Then
there is a desingularization f : N → M of X.

3.1. Description of the algorithm

Let M be a manifold of dimension d and let (a, f ) be a given IDE with domain M and range
F. One of the main results proved in this paper to solve the IDE (2.1) consists, roughly, in
transforming it into an equivalent IDE, say

ã2(y)ẏ = f̃ 2(y)

on an analytic manifold M̃2, which is an IDE of locally constant rank. The manifold M̃2 will
be constructed by an algorithm that involves a desingularization process.
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3.1.1. The decomposition M = M0 ∪ M1 ∪ M2. We are going to use the notation introduced
in section 2. We can assume without loss of generality that arbitrary local coordinates in M
and also a basis in F have been chosen, which makes sense of expressions like det A(x) and
also of [a(x), f (x)] as being a matrix whose first columns are the columns of a(x) while
the last column is f (x), used below. First, let us assume that M is a connected manifold of
dimension d. For i = 0, 1, . . . , let

Si(M) = {x ∈ M| rank a(x) � i}
= {x ∈ M| det A(x) = 0, A(x) submatrix of a(x) of order i + 1}.

Si(M) is clearly a closed analytic subset of M, defined by analytic equations, for i = 0, 1, . . . .
Also, for i = 0, 1, . . . , let Li(M) ⊆ Si(M) be defined by

Li(M) = {x ∈ Si(M)| rank[a(x), f (x)] � i}
= {x ∈ Si(M)| det A(x) = 0, A(x) submatrix of [a(x), f (x)] of order i + 1}.

Each Li(M) is a closed analytic subset of M defined by analytic equations.
Let

Sk1(M) ⊂ Sk2(M) ⊂ · · · ⊂ Skr
(M)

be the distinct nonempty Si(M). We observe that Skr
(M) ≡ M . Consider the corresponding

inclusions

Lk1(M) ⊆ Lk2(M) ⊆ · · · ⊆ Lkr
(M).

We have that rank a(x) = rank[a(x), f (x)] = kj for each x ∈ Lkj
(M) − Skj−1(M),

j = 1, . . . , r . The LAS associated with (2.1) has solution for each x ∈ Lkj
(M) −

Skj−1(M), j = 1, . . . , r , where we have, by definition, Sk0 = ∅.
We remark the following useful facts: the set Lkj

(M)−Skj −1(M) may be empty, for some
j = 1, . . . , r; we have dim Skr−1(M) < dim M; if dim(Lkr

(M)) = d, then Lkr
(M) = M .

Now let M be a manifold of dimension d, and note that the components of M must have
dimension less than or equal to d. Let Mmax = ⋃

j Wj be the union of all of the connected
components of M with dimension d.

We will consider the following pairwise disjoint conditions for a given Wj ⊆ Mmax:

(a) Lkr
(Wj ) = ∅.

(b) Lkr
(Wj ) �= ∅ and dim Lkr

(Wj ) < d.
(c) Lkr

(Wj ) �= ∅ and dim Lkr
(Wj ) = d.

According to these disjoint conditions, we decompose the index set into the disjoint union of
the following subsets:

Ia = {
j
∣∣Lkr

(Wj ) = ∅}
Ib = {

j
∣∣Lkr

(Wj ) �= ∅ and dim Lkr
(Wj ) < d

}
Ic = {

j
∣∣Lkr

(Wj ) �= ∅ and dim Lkr
(Wj ) = d

}
.

We then define the following pairwise disjoint subsets of M:

M0 = (M − Mmax) ∪
⋃
j∈Ib

Lkr
(Wj ) ∪

⋃
j∈Ic

Skr−1(Wj )

M1 =
⋃
j∈Ia

Wj ∪
⋃
j∈Ib

(
Wj − Lkr

(Wj )
)

M2 =
⋃
j∈Ic

(
Wj − Skr−1(Wj )

)
.
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We have the following assertions, whose proof is easy: each subset Lkr
(Wj ) ⊆ Wj , and each

subset Skr−1(Wj ) ⊆ Wj , is a closed analytic subset of Wj defined by analytic equations on Wj .
In consequence, Wj − Lkr

(Wj ),Wj − Skr−1(Wj ) are open submanifolds of Wj .
The manifold M is the disjoint union

M = M0 ∪ M1 ∪ M2.

The manifolds M1 and M2 are open submanifolds of M. The subset M0 is a union of subsets
defined by analytic equations on each Wj , union M − Mmax, and we have that dim M0 < d.

Remark. It is easy to prove, using the definitions of M1 and M2, that if M is connected, then
we must have either M1 = ∅ or M2 = ∅.

3.1.2. Restrictions (a, f )|M0, (a, f )|M1, (a, f )|M2 and desingularization of (a, f )|M0.
We have that the LAS associated with (2.1) has no solution for x ∈ M1. On the other
hand, it has solution for all x ∈ M2, moreover, (a, f )|M2, is an IDE of locally constant rank.

It remains to see what happens with the system restricted to M0. The idea here is to
desingularize each closed analytic subset Lkr

(Wj ) ⊆ Wj and Skr−1(Wj ) ⊆ Wj . By forming
the disjoint union of those desingularizations and M − Mmax one obtains a desingularization
of M0, say

π0 : M1 → M, where π0(M
1) = M0.

Then (2.1) restricted to M0, that is (a, f )|M0, can be naturally lifted, using the pull-back
operation, to an IDE (a1, f1) = π∗

0 ((a, f )|M0) on M1 as follows:

a1(y)ẏ = a(π0(y))Tyπ0(y, ẏ) f1(y) = f (π0(y)).

We should remark at this point that in the present paper a tangent vector (x, ẋ) to M0 at a point
x ∈ M0 is a vector (x, ẋ) ∈ TxM such that there is an analytic curve z(t) ∈ M0, say defined
for t ∈ (−δ, δ), such that z(0) = x and the tangent vector to z(t) at t = 0 as a curve in M
coincides with (x, ẋ). Then, in particular, if y(t) is a given analytic curve in M1 then

Tyπ0(y, ẏ) = dπ0(y(t))

dt

∣∣∣∣
t=0

is a tangent vector to M0 at π0(y(0)).
Note that M1 is a manifold of dimension dim M1 = dim M0 < d.

3.1.3. Desingularization of (a, f ) in a finite number of steps. Now we repeat the process for
the IDE (a1, f1) with domain M1 and range F, proceeding as we did before with the system
(a, f ) with domain M and range F. We obtain a decomposition

M1 = M1
0 ∪ M1

1 ∪ M1
2 .

We know that there is no solution to the LAS system

a1(y)ẏ = f1(y)

for y ∈ M1
1 . We also know that there is solution to the same LAS system for y ∈ M1

2 ;
moreover, (a1, f1)

∣∣M1
2 is an IDE of locally constant rank. Now we desingularize M1

0

π1 : M2 → M1, π1(M
2) = M1

0
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and repeat the process. It is clear that we obtain a finite sequence of manifolds and maps

Mq
πq−1→ Mq−1 πq−2→ · · · π1→ M1 π0→ M,

where π0(M
1) = M0, π1(M

2) = M1
0 , and in general πi(M

i+1) = Mi
0, for i = 0, . . . , q − 1,

where we have written M0 ≡ M to unify the notation.
We have obtained a finite recursive procedure that reduces the problem to a finite number

of IDE of locally constant rank, namely, the IDE of locally constant rank (ai, fi)
∣∣Mi

2,
for i = 0, 1, . . . , q, where we have written (a0, f0) = (a, f ), to unify the notation.
We will call this a desingularization process and the sequence of maps πi and IDE
(ai+1, fi+1), i = 0, . . . , q − 1, a desingularization of (a, f ).

In section 4 we give some illustrative examples.
The collection of IDE (ak, fk)|Mk

2 , k = 0, . . . , q, defines a single IDE (ã2, f̃ 2) of locally
constant rank in the disjoint union M̃2 = ⊔q

k=0 Mk
2 , as we have said at the beginning of

section 3.1. We have a natural projection π̃2 : M̃2 → M . This IDE (ã2, f̃ 2) with domain M̃2

and range F is called the desingularized IDE.

Remark. A couple of remarks are in order to help simplify the practical application of the
algorithm.

(a) As we have said before the range F remains the same throughout the application of the
algorithm. However, in practice, it is sometimes convenient to apply theorem 2.1, which
may imply a change of F, to simplify calculations.

(b) Assume for a moment that M is connected, then there is only one connected component
Wj ≡ M . In order to apply the algorithm as it has been described it is not necessary
to calculate Si(M) and Li(M), for all i = 1, . . . , kr . We first determine the number kr ,
which is the maximum of rank a(x), x ∈ M . Then we know that Skr

(M) = M . Next we
determine whether Lkr

(M) = ∅ or Lkr
(M) �= ∅. If Lkr

(M) = ∅ then we immediately
conclude that M0 = M2 = ∅ and M = M1. If Lkr

(M) �= ∅ and dim Lkr
(M) < d we can

conclude that M0 = Lkr
(M) and M2 = ∅, therefore M = M0 ∪ M1. If Lkr

(M) �= ∅ and
dim Lkr

(M) = d we must calculate Skr−1(M), then we have M0 = Skr−1(M) and M1 = ∅,
therefore M = M0 ∪ M2.

If the manifold is a disjoint union of connected components Wj as explained before, then for
each Wj of maximum dimension d we calculate the decomposition

Wj = (Wj )0 ∪ (Wj )1 ∪ (Wj )2,

as explained above, and then we can calculate

M0 = (M − Mmax) ∪
⋃
j

(Wj )0,

M1 =
⋃
j

(Wj )1,

M2 =
⋃
j

(Wj )2.

3.2. Solving IDE via desingularization

In this paragraph we will describe basic aspects of the relationship between solutions to a
given IDE of the type (2.1), say a(x)ẋ = f (x), and solutions to the desingularized system
(ã2, f̃ 2) described in the previous paragraph. The main results about this kind of questions
are precisely stated and proved in section 5. In that section solutions to a given IDE belong
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to a class of curves called as-curves, see definition 5.3, rather than to the class of analytic
curves, in order to use the theory of subanalytic subsets as explained in section 1. However,
for the reader who is not specifically interested in the technical aspects of the proofs going
carefully through section 5 is not necessary. In fact, the basic strategy to solve a given IDE
via desingularization is described in the present paragraph, below, and it will be enough here
to think just of analytic solutions. One must keep in mind that if x : (t0, t1) → M is an
analytic curve then any restriction of the type x|(τ0, τ1), x|[τ0, τ1), x|(τ0, τ1], x|[τ0, τ1], where
t0 < τ0 < τ1 < t1, is an as-curve. It is also useful to keep in mind that every analytic solution
can be obtained by gluing together a countable (finite or infinite) number of as-solutions. All
this can be proved easily from the definition of an as-curve.

We must remark that, in spite of the relative complexity of the proofs, in order to interpret
our main theorems, namely theorems 5.12 and 5.14, it is enough to know the definition of an
as-curve, given at the beginning of section 5.

It is easy to see using the definitions given in section 3 that any solution y(t), t ∈ (t0, t1),
to (ã2, f̃ 2) projects to a solution x(t) = π̃2(y(t)) to the system a(x)ẋ = f (x). On the other
hand, it is also easy to see that the converse of this statement is not true. In fact, assume for
simplicity that q = 1 that is M̃2 = M2 ∪ M1

2 (disjoint union) and that M0 �= ∅. Assume that
a certain solution x(t), t ∈ (t0, t1) to (2.1) is analytic. Then, since M0 is defined by analytic
equations we must have that either x(t) ∈ M0, t ∈ (t0, t1) or x(t) ∈ M0 only for those t
belonging to a certain sequence (finite or infinite) τ1 < τ2 < · · · . Assume that the latter holds
and that the sequence τ1 < τ2 < · · · is nonempty, which is perfectly possible in examples. Any
solution y(t), t ∈ (t0, t1) to (ã2, f̃ 2) is continuous so it must satisfy one and only one of the
following conditions: y(t) ∈ M2, t ∈ (t0, t1) or y(t) ∈ M1

2 , t ∈ (t0, t1). Since π̃2|(M2) = 1M2

and π̃2
(
M1

2

) = M0 it is easy to see that we cannot have π̃2(y(t)) = x(t), t ∈ (t0, t1). This
means that in this case the solution x(t) cannot be recovered completely as a projection via
π̃2 of a solution to (ã2, f̃ 2). However, we still have that each piece of x(t) of the type
x|(τi, τi+1), i = 1, 2, . . . , is a projection via π̃2 of a solution to (ã2, f̃ 2). In fact, since
π̃2|M2 = 1M2 we have that y(t) = x(t), t ∈ (τi, τi+1) is such a solution. Now assume that
x(t) ∈ M0, t ∈ (t0, t1). Using results from section 5, in fact, using theorem 5.12(b), we can
easily show that there is a decomposition of x(t) in pieces of the type x|(τi, τi+1), i = 1, 2, . . . ,
and each piece is a projection via π̃2 of a solution y(t), t ∈ (τi, τi+1) to (ã2, f̃ 2) or, since in
this example π̃ |M1

2 = π1, a solution to (a1, f1). This kind of result holds for an IDE with
arbitrary q, not just q = 1. In conclusion, we have the following strategy to find all analytic
solutions to a given IDE via desingularization.

(1) For a given IDE (a, f ) of the type (2.1) find the desingularized system (ã2, f̃ 2), as
explained in section 3.

(2) Find all the analytic solutions y(t), t ∈ (t0, t1) to (ã2, f̃ 2). For a given initial condition
y0 ∈ Mk

2 , k = 0, 1, . . . , q, all solutions y(t) ∈ Mk
2 , t ∈ (t0, t1), can be found in a similar

way as we did in section 1.1 to solve equation (1.1).
(3) For each projected solution x(t) = π̃2(y(t)), t ∈ (t0, t1), determine if there are continuous

extensions to the intervals [t0, t1), (t0, t1] and if these extensions are derivable at t0 on the
right and at t1 on the left, respectively. Finally, determine if these extensions satisfy the
given IDE at points t0 and t1.

As we have said before for any given analytic solution x(t), t ∈ (t0, t1), there is a decomposition
of x(t) in pieces of the type x|(τi, τi+1), i = 1, 2, . . . , and each piece is a projection via π̃2

of a solution y(t), t ∈ (τi, τi+1), to (ã2, f̃ 2). We can conclude that any analytic solution to
(a, f ) can be recovered by gluing together extensions to the endpoints of their intervals of
definitions, if such extensions exist, of projections via π̃2 of solutions to (ã2, f̃ 2).
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Remark. The previous method does not give an answer to the following kind of initial
condition problem for the IDE of the type (2.1): given an initial condition x(t0) = x0, where
x0 ∈ M0 determine if there is an as-solution x(t), t ∈ [t0, t1), such that x(t) ∈ M2 for
t ∈ (t0, t1). Or, more generally given an initial condition y(t0) = y0, where y0 ∈ Mk

0 , for some
k = 0, 1, . . . , q, determine if there is an as-solution y(t), t ∈ [t0, t1), such that y(t) ∈ Mk

2
for t ∈ (t0, t1). This kind of questions is important and will be addressed in subsequent
works.

4. An example from nonholonomic mechanics

A nonholonomic system on a configuration space Q is given by a Lagrangian L : T Q → R

and a distribution D ⊆ T Q. Lagrange–D’Alembert’s equations of motion are derived using
Lagrange–D’Alembert’s principle. These equations form an IDE which is known to be
equivalent to an ODE on T Q in the important case in which L is nondegenerate. By adding
the equation of preservation of energy E = e, where E : T Q → R is the energy function and
e is a fixed energy level, to the previous IDE we obtain an equivalent IDE on T Q. There
are some recent references where nonholonomic systems are studied from a DAE (differential
algebraic equation, see the introduction) perspective [32].

In the rather common case in mechanics in which Q is a principal bundle with group G
and both L and D are invariant, Lagrange–D’Alembert’s principle can be reduced [5] and one
obtains reduced equations of motion on T Q/G. Upon the choice of a principal connection,
those equations can be written as Lagrange–D’Alembert–Poincaré equations of motion on
T Q/G ≡ T (Q/G) ⊕ g̃, where g̃ is the adjoint bundle. These equations form an IDE which
has unique solution for each initial condition provided that the Lagrangian is nondegenerate.
If the reduced equation which gives preservation of energy at the reduced level is added to that
IDE a new equivalent IDE is obtained. It would be of interest, for a given example, to show
that the latter is equivalent to an ODE on a known manifold. What we are going to do next
is to show that this is precisely the case for an interesting example from mechanics, using the
methods of the present paper.

4.1. The symmetric sphere rolling without sliding or spinning

A rigid sphere rolling on a horizontal plane can be modelled as a nonholonomic system on the
manifold SO(3) × R

2 where, for a given element (A, x) ∈ SO(3) × R
2, A represents a rigid

rotation and x the position of the point of contact of the sphere with the plane. The kinematics
of this system can be described as follows. We assume that there is an orthonormal system
fixed in the space, say (e1, e2, e3), e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), then we have
a basis moving with the body, (Ae1, Ae2, Ae3), where A = A(t). We introduce the variable
z ∈ S2, given by z = Ae3. The spatial angular velocity ω can be written as ω = v0z + z × ż,
so v0 = 〈ω, z〉 is the component of ω along z. The nonholonomic constraint is given by
the nonsliding condition ω × re3 = ẋ, where r is the radius of the sphere. Now we will
imagine that the sphere is elastic and that deformations are small and concentrated near the
area of contact which is a small circle whose centre has a position given by x. Then we must
add to the usual nonsliding condition for the rigid rolling sphere the extra condition that the
vertical component of the spatial angular velocity is 0, that is, ω3 = 0. This is sometimes
called Veselova’s constraint [33]. We are going to assume that the centre of mass coincides
with the centre of the sphere and that the principal axis of inertia are (Ae1, Ae2, Ae3). The
three principal moments of inertia of the sphere are I1, I2, I3, and we are going to assume that
I1 = I2. We introduce the adimensional quantities α = I3/I1 and β = Mr2/I1, where M is
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the mass of the sphere. The Lagrangian of the system is given by the kinetic energy
1
2I1ż

2 + 1
2I3v

2
0 + 1

2Mẋ2

where ẋ is the velocity of the centre of the sphere. Since the nonholonomic constraint is given
by ẋ = ω × re3 and ω3 = 0, we can conclude that the kinetic energy of the actual motion of
the symmetric sphere is given by

E = 1
2 (I1 + Mr2)ż2 + 1

2 (I3 + Mr2)v2
0 .

4.2. The IDE for the symmetric sphere rolling without sliding or spinning

As a result of reduction by the symmetry, in this case reduction by the subgroup SO(2) × R
2,

we obtain the following system of Lagrange–D’Alembert–Poincaré equations, which is an
IDE,

(α + β)(z × e3)v̇0 + (1 + β)〈z, e3〉∇żż − (α + β)v0〈z, e3〉(z × ż) = 0 (4.1)

v0〈z, e3〉 + 〈z × ż, e3〉 = 0. (4.2)

Here ∇ represents the Levi-Civita connection on S2 with respect to the standard metric. This
is a consequence of the methods developed in [5], after some more or less straightforward
calculations which we will not explain here. The previous Lagrange–D’Alembert–Poincaré
equations are derived under the assumption z3 �= 0 because the so-called dimension assumption
adopted in [5] is not satisfied for the whole manifold S2. Nevertheless, by continuity,
equations (4.1), (4.2) are also satisfied by the motion of the rolling ball for z3 = 0. Without
using the derivation of the Lagrange–D’Alembert–Poincaré equations, the careful reader may
want to check directly that the previous system of equations or, equivalently, the system of
equations (4.8)–(4.15), is equivalent to balance of momentum plus the condition ω3 = 0.

Since ∇żż = z × (z̈ × z) by taking the inner product of (4.1) with ż and using (4.2) we
get, at least for 〈z, e3〉 �= 0,

0 = d

dt

(
(1 + β)ż2 + (α + β)v2

0

)
, (4.3)

from which one deduces

2ε = (1 + β)ż2 + (α + β)v2
0, (4.4)

where ε represents the normalized energy. This equation represents conservation of energy,
as one can check more directly by looking at the expression of the kinetic energy E given at
the beginning of this section. We shall assume from now on that ε > 0, otherwise the motion
is trivial.

We have the following equations to be satisfied for the symmetric elastic sphere in variables
(z, u) where ż = v and v × z = u, so the variable v0 does not appear,

(1 + β)〈z, e3〉〈u̇, e3 × z〉 + (α + β)〈u, e3〉2 = 0 (4.5)

(1 + β)〈z, e3〉2u2 + (α + β)〈u, e3〉2 − 2ε〈z, e3〉2 = 0. (4.6)

Equation (4.5) is obtained by taking the inner product of (4.1) with e3 and using (4.2) while
equation (4.6) is obtained from equation (4.3) and equation (4.2).

Equations (4.5) and (4.6) involve the variables (z, u) ∈ T S2 and we have a natural
inclusion T S2 ⊆ S2 × R

3, where

T S2 = {(z, u) ∈ S2 × R
3 : 〈z, u〉 = 0}.
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Equations (4.5), (4.6) form an IDE in the manifold T S2. By adding the equation z2 = 1,
we obtain an equivalent IDE in the variables (z, u) ∈ R

3 × R
3. Let us include, in addition,

the equation of conservation of energy (4.3), written in terms of the variables (z, u, v0), as
follows:

2ε = (1 + β)u2 + (α + β)v2
0 . (4.7)

In other words, we are going to study the system of equations given by (4.5), (4.6), (4.7) for
a fixed ε > 0. Of course, equations (4.6) and (4.7) taking into account (4.2) are redundant
for z3 �= 0, but for z3 = 0 the system given by equations (4.5), (4.6) includes solutions of the
type z(t) = const, with z3 = 0, where v0 takes any given value. Since u = 0 for this kind of
motion, the energy is given by 2ε = (α + β)(v0)

2 and therefore the condition that the energy
must have a fixed value will not be satisfied. Of course, we can study with our methods both
the system given by (4.5), (4.6), (4.7) and also the system given by (4.5), (4.6), but we will
choose to study just the first of them, for simplicity.

Considering that z2 = 1 and ż = z × u, we must have 〈z, u〉 = 0. Using what was said
in the previous paragraph, and according to theorem 2.1, we can write the IDE for the system
in variables (z, u, v0) ∈ R

3 × R
3 × R as follows:

ż1 = z2u3 − z3u2 (4.8)

ż2 = z3u1 − z1u3 (4.9)

ż3 = z1u2 − z2u1 (4.10)

0 = (1 + β)z3(−z2u̇1 + z1u̇2) + (α + β)u2
3 (4.11)

0 = (1 + β)z2
3

(
u2

1 + u2
2 + u2

3

)
+ (α + β)u2

3 − 2εz2
3 (4.12)

0 = z2
1 + z2

2 + z2
3 − 1 (4.13)

0 = z1u1 + z2u2 + z3u3 (4.14)

0 = 2ε − (1 + β)u2 − (α + β)v2
0 . (4.15)

The system (4.8)–(4.15) can be written in the form a(X)Ẋ = f (X), with X = (z, u, v0).

4.3. Application of the algorithm

We will work on the manifold M = R
7, where (z1, z2, z3, u1, u2, u3, v0) ∈ R

7 are independent
variables. Then our IDE is given by equations (4.8)–(4.15). We can easily see that
kr = 4, S4(M) = M,L4(M) = M0,M1 = M − L4(M),M2 = ∅. Now we shall describe M0

by equations. Let

ϕ1 = −(1 + β)z2z3 (4.16)

ϕ2 = (1 + β)z1z3 (4.17)

ν1 = (1 + β)z2
3

(
u2

1 + u2
2 + u2

3

)
+ (α + β)u2

3 − 2εz2
3 (4.18)

ν2 = z2
1 + z2

2 + z2
3 − 1 (4.19)

ν3 = z1u1 + z2u2 + z3u3 (4.20)

ν4 = 2ε − (1 + β)u2 − (α + β)v2
0 . (4.21)
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As we know M0 = L4(M) is given by the condition that rank[a, f ] � 4. Let

M0a = {ϕ1 = 0, ϕ2 = 0} (4.22)

= {z3 = 0} ∪ {z1 = 0, z2 = 0} (4.23)

M0b = {ν1 = 0, ν2 = 0, ν3 = 0, ν4 = 0}. (4.24)

Then we can easily see that M0 = M0a ∪ M0b. The desingularization M1 of M0 will be the
disjoint union of the desingularizations of M0a and M0b.

The desingularization M1
a of M0a can be described by M1

a ≡ {z3 = 0} ⊔ {z1 = 0, z2 = 0},
where

⊔
means disjoint union and the projection π0 is the identity on each disjoint piece

of M1
a . One can see using (4.8)–(4.15) that the lifted system (a1, f1)|{z3 = 0} satisfies

z3 = 0, u3 = 0, z2
1 + z2

2 = 1, which implies ż = 0, and also, since u = ż × z, that u = 0. This
describes the motion completely. It consists of the rolling of the sphere with z(t) = (z10, z20, 0)

fixed and the z component of the angular velocity v0 satisfies 2ε = (α + β)(v0)
2. The lifted

system (a1, f1)|{z1 = 0, z2 = 0} satisfies z1 = 0, z2 = 0, z3 = ±1, therefore ż = 0, and then
u = 0, which contradicts equation ν1 = 0, because we have assumed ε > 0. So there is no
motion, that is, no solution, for the system (a1, f1)|{z1 = 0, z2 = 0}.

Now we will desingularize M0b. We are going to see that M0b is in fact a nonsingular
manifold. More precisely, we will define the desingularized manifold M1

b by equations in the
variables (z, u, v0), with v0z3 = u3, from (4.2). For simplicity, we call µ = 2ε/(1 + β) > 0
and λ = (α + β)/(1 + β) > 0, from now on. Then we have the following equations defining
the nonsingular manifold M1

b :

0 = u3 − v0z3 (4.25)

0 = u2
1 + u2

2 + u2
3 + λv2

0 − µ (4.26)

0 = z2
1 + z2

2 + z2
3 − 1 (4.27)

0 = z1u1 + z2u2 + z3u3. (4.28)

We are not going to give a detailed proof that the system above defines a nonsingular
manifold. It is not difficult to prove it, by applying the implicit function theorem at each
point of the manifold. The map π0 : M1

b → M is then given by the restriction of the identity
(z, u, v0) → (z, u, v0) to M1

b and one can check that the image of π0 is precisely M0b.
According to theorem 2.1, the system lifted to M1

b has the same solutions as the system
given by

ż1 = z2u3 − z3u2 (4.29)

ż2 = z3u1 − z1u3 (4.30)

ż3 = z1u2 − z2u1 (4.31)

z2u̇1 − z1u̇2 = λv0u3 (4.32)

0 = u3 − v0z3 (4.33)

0 = u2
1 + u2

2 + u2
3 + λv2

0 − µ (4.34)

0 = z2
1 + z2

2 + z2
3 − 1 (4.35)

0 = z1u1 + z2u2 + z3u3. (4.36)

It is not difficult to see that the previous IDE defines an analytic vector field on the manifold
defined by the last four equations, which is essentially the manifold M1

b . In fact, using the
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implicit function theorem one can calculate the tangent space at each point of this manifold
and then see that there is only one solution (ż, u̇, v̇0) to the linear system associated with the
IDE which is tangent to the manifold. One can also see that this solution depends analytically
on the point (z, u, v0) ∈ M1

b . In other words, the previous IDE defines an analytic vector field
on M1

b .

4.4. Identification of M1
b

In [10], we have shown the following parametrization of M1
b in variables (θ, ϕ, ψ), which can

be checked directly after some straightforward calculations:

z1 = sin θ cos ϕ (4.37)

z2 = sin θ sin ϕ (4.38)

z3 = cos θ (4.39)

u1 = −a cos(ϕ − ψ) cos2 θ cos ϕ − b sin(ϕ − ψ) sin ϕ (4.40)

u2 = −a cos(ϕ − ψ) cos2 θ sin ϕ + b sin(ϕ − ψ) cos ϕ (4.41)

u3 = a cos(ϕ − ψ) cos θ sin θ (4.42)

v0 = a cos(ϕ − ψ) sin θ, (4.43)

where

a =
√

µ

λ sin2 θ + cos2 θ
, b = √

µ
′
.

In other words, by some straightforward calculations we can check that (z1, z2, z3, u1,

u2, u3, v0) in coordinates (θ, ϕ, ψ) satisfies (4.25)–(4.28).
We can easily prove that equations (4.37)–(4.43) define a diffeomorphism f : S2 × S1 →

M1
b , f (z, (cos ψ, sin ψ)) = (z, u, v0), which gives the desired identification of M1

b . This is
straightforward, although it is not very short.

5. The main theorems

In this section, we will show in which precise sense the solutions to a desingularization of
a given analytic IDE (a, f ) are related to the solutions to (a, f ). It is clear that in certain
examples of IDE one can show in a more or less direct way that solutions to the desingularized
system project via π̃2 onto solutions to the given IDE, and also that solutions to the IDE are
such projections. For instance, if one is interested only in the local behaviour of solutions
near a singular point of M0 it is sometimes enough to use a blow-up to desingularize M0 at
that point. One can show in certain cases in a simple and useful way the relationship between
solutions to the given system and solutions to the system obtained by blow-up. An interesting
example appears in [17].

However, a desingularization is a composition of blow-ups. In the present paper we want
a general global result showing that a curve, belonging to a certain convenient class of curves,
is a solution to a given IDE if and only if it is essentially the projection via the map π̃2 of a
solution to the desingularized system belonging to the same class of curves. In order to be
able to use the theory of subanalytic sets we need to carefully define a convenient class of
curves, which we will do in the next paragraph.

From now on, we will often use theorem 6.1 of [15] that a subanalytic subset of dimension
1 of an analytic manifold M is a semianalytic subset. We will also often use the fact that the
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image of a relatively compact subanalytic subset under a subanalytic map is a subanalytic
subset, see [15] immediately after definition 3.2. Since an analytic map is subanalytic we can
deduce that the image of a relatively compact subanalytic subset under an analytic map is a
subanalytic subset, which will be also useful for us.

In what follows, we will work with several types of intervals, like (τ0, τ1), [τ0, τ1), (τ0, τ1]
or [τ0, τ1]. We will usually assume that τ0 and τ1 are real numbers. However, some definitions
and results are also valid for the case in which some of the open ends of an interval is ±∞,
that is, for intervals (−∞, τ1), (τ0, +∞), (−∞, +∞), [τ0, +∞), (−∞, τ1].

5.1. The notion of an as-curve

Inspired by [15] definition 3.2 we will define

Definition 5.1. A subanalytic curve x : (t0, t1) → M is a subanalytic map, that is, a map such
that graph x ⊆ R × M is a subanalytic subset. We define the notion of a subanalytic curve
x : [t0, t1) → M,x : (t0, t1] → M or x : [t0, t1] → M in a similar way.

In definition 5.1 since dim(graph x) = 1 we have that graph x is a semianalytic set.

Lemma 5.2. (a) Let x : [t0, t1) → M be a continuous subanalytic curve whose graph
is a relatively compact subset. Then there is a uniquely defined continuous subanalytic
extension x̄ : [t0, t1] → M . A similar result holds for subanalytic curves x : (t0, t1] → M or
x : (t0, t1) → M .

(b) Let x : [t0, t1) → M be a continuous subanalytic curve whose graph is not a relatively
compact subset. Then graph x is closed. A similar result holds for subanalytic curves
x : (t0, t1] → M or x : (t0, t1) → M .

Proof. First we shall prove (a). We need to show first that the limit of x(t) as t ⇀ t−1
exists. Using corollary 2.8 of [15] we can deduce that the closure G of G = graph x in
R × M is subanalytic and compact, and then also G ∩ ({t1} × M) is subanalytic and compact
and it is easy to see that it is nonempty. Let x1 ∈ G ∩ ({t1} × M) be given. One can
choose local coordinates at x1, then for any small ε > 0 the set Gε = G ∩ ((t0, t1) × Bε(x1))

is relatively compact and nonempty. We can easily deduce from theorem 3.14 of [15], or
also from comments after definition 3.1 of [15], that any relatively compact subanalytic set
has a finite number of connected components. Let Ci, i = 1, . . . , n(ε), be the connected
components of Gε . It is not difficult to see that each connected component Ci is of the type
Ci = graph(x|(αi, βi)), i = 1, . . . , n(ε). We can assume without loss of generality that
βi � αi+1, i = 1, . . . , n(ε) − 1. Since x1 is a limit point of Gε we must have βn(ε) = t1,
which implies that x(t) ∈ Bε(x1) for all t ∈ (αn(ε), βn(ε)), as we wanted to prove. The fact that
the continuous extension x̄ : [t0, t1] → M is a subanalytic curve follows from corollary 2.8
of [15] or, also, from comments after definition 3.1 of [15]. The rest of the proof of (a) can
be performed in a similar way. Now we will prove (b). If graph x is not relatively compact
then G ∩ ({t1} × M) must be empty, otherwise we can proceed as in the proof of (a) and
we can conclude that the limit of x(t) as t ⇀ x−

1 exists and then one can show easily that
G is relatively compact. Since all the limit points of G must belong to G ∩ ({t1} × M)

we have that G is closed. The rest of the proof of (b) can be performed in a similar
way. �

In order to define a convenient class of curves to solve a given IDE we introduce the
following notion:
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Definition 5.3. (a) An analytic–semianalytic curve x(t), t ∈ (t0, t1), in M, where M is a
given manifold, is an analytic map x : (t0, t1) → M which is also a subanalytic curve, that is,
such that graph x is a semianalytic subset of R × M . We will often call such an analytic–
semianalytic curve in M simply an as-curve in M.

(b) An analytic–semianalytic curve (or as-curve) x(t), t ∈ [t0, t1), (t ∈ (t0, t1], t ∈ [t0, t1])
in M, where M is a given manifold, is a continuous map x : [t0, t1) → M (respectively,
x : (t0, t1] → M,x : [t0, t1] → M), which is also a subanalytic curve, that is, such that graph x

is a semianalytic subset of R × M and x|(t0, t1) is an as-curve in M.

For instance, x = √
t, t ∈ (0, c) (or t ∈ [0, c), t ∈ (0, c], t ∈ [0, c]), with c > 0, are as-curves

in R. On the other hand, x = t sin(π/t), t ∈ (0, c), with c > 0, is not an as-curve in R, but
x = t sin(π/t), t ∈ (δ, c), with 0 < δ < c, is an as-curve in R.

Next, we will give some lemmas that we need to prove our main results. They give some
basic properties of as-curves.

Lemma 5.4. (a) Let x : (t0, t1) → N be a given analytic map, where N is a given manifold.
Then any map x|(t̄0, t̄1) : (t̄0, t̄1) → N , where t̄0 and t̄1 are such that t0 < t̄0 < t̄1 < t1, is an
as-curve in N. In a similar way, any map x|[t̄0, t̄1) : [t̄0, t̄1) → N, x|(t̄0, t̄1] : (t̄0, t̄1] → N , or
x|[t̄0, t̄1] : [t̄0, t̄1] → N , with t̄0 and t̄1 as before, is an as-curve in N.

(b) Let x : (t0, t1) → N be an as-curve and assume that graph x is a relatively compact
subset of R×N . Then there is a unique continuous extension x̄ : [t0, t1] → M . This extension
is an as-curve.

Proof. Let us prove (a). We have that graph(x|(t̄0, t̄1)) is a semianalytic subset of R × N

defined as {(t, x) ∈ (t0, t1) × N : t̄0 < t < t̄1, x = x(t)}. The rest of (a) can be proved in a
similar way. To prove (b) we simply apply lemma 5.2. �

Lemma 5.5. Let x : [t0, t1) → M be a subanalytic map and assume that x is continuous at t0.
Then there exists t2 ∈ (t0, t1) such that x|[t0, t2] is an as-curve. A similar result holds for a
subanalytic map x : (t0, t1] → M continuous at t1, that is, there exists t2 ∈ (t0, t1) such that
x|[t2, t1] is an as-curve.

Proof. If x is a constant the result follows immediately. Let us assume that x is not a constant.
It is easy to see that graph(x|[t0, t2]) is a semianalytic subset of R × M of dimension 1,
for every t2 ∈ (t0, t1). We can assume without loss of generality, using, for instance, Whitney
embedding theorem, that M ⊆ U is an analytic submanifold of U, where U is a real finite-
dimensional vector space. Let p1 : R × U → R be the projection onto the first factor.
Continuity of x at t0 implies that one can choose b ∈ (t0, t1), such that graph(x|[t0, b]) is a
relatively compact subanalytic subset of R × U . According to lemma 3.4 of [15] we have that
graph(x|[t0, b]) is a finite union of connected smooth semianalytic subsets A such that, for
each A, rank(p1|A) is constant. It is not difficult to see that each A has dimension 0 or 1 and
that rank(p1|A) is 0 or 1. Moreover, we can easily see that there must be an A, say A = A0,
such that rank(p1|A0) = 1, p1(A0) = (t0, t2), for some t2 ∈ (t0, b], and p1(Ā0) = [t0, t2].
From this we can easily deduce that x|(t0, t2) is an as-curve and moreover, using lemma 5.4,
(b), that x|[t0, t2] is an as-curve. The rest of the proof can be performed in a similar way. �

Lemma 5.6. (a) Let x : [t0, t1] → M,x : [t0, t1) → M or x : (t0, t1] → M be an as-curve in
M. Then x|(t0, t1) is an as-curve in M.

(b) Let x : (t0, t1) → M be an as-curve in M and assume that there is a continuous
extension x̄ : [t0, t1] → M, x̄ : [t0, t1) → M or x̄ : (t0, t1] → M . Then x̄ is an as-curve in M.
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(c) Let f : M → N be a given analytic map. Let x(t), t ∈ [t0, t1) (t ∈ (t0, t1], t ∈
[t0, t1], t ∈ (t0, t1)) be an as-curve in M. Then f (x(t)), t ∈ [t̄0, t̄1], is an as-curve in N, for
each [t̄0, t̄1] ⊆ [t0, t1) (respectively, [t̄0, t̄1] ⊆ (t0, t1], [t̄0, t̄1] ⊆ [t0, t1], [t̄0, t̄1] ⊆ (t0, t1)). If
graph x is relatively compact then f (x(t)), t ∈ [t0, t1), (t ∈ (t0, t1], t ∈ [t0, t1], t ∈ (t0, t1)) is
an as-curve and graph(x ◦ f ) is relatively compact.

Proof. Part (a) is easy to prove using the definitions. Part (b) follows easily using
corollary 2.8 of [15]. To prove (c) observe first that f ◦ x : (t0, t1) → N is an analytic
map. Since graph(x|[t̄0, t̄1]) is a semianalytic compact subset of dimension 1 of R × M

we have that graph(f ◦ x|[t̄0, t̄1]) = (1R × f )(graph(x|[t̄0, t̄1]), taking into account that
1R × f : R × M → R × N is an analytic map, is also semianalytic compact and of dimension
1, and a similar proof can be given for the case of the intervals (t0, t1], [t0, t1], (t0, t1). If
graph x is relatively compact then according to lemma 5.2 we have a continuous extension x̄

which is an as-curve and therefore we can apply the first part of (c) to this extension. The rest
of the proof follows easily. �

Lemma 5.7. Let N be a given manifold and let x : [t0, t1) → N be an as-curve in N which is not
a constant. Then there exist t2 ∈ (t0, t1) such that x((t0, t2)) is an analytic submanifold which
is also a semianalytic subset, x|(t0, t2) : (t0, t2) → x((t0, t2)) is an analytic diffeomorphism
and x|[t0, t2] : [t0, t2] → x([t0, t1]) is an homeomorphism. Similar results hold for an as-curve
x : (t0, t1] → N .

Proof. Let t0 < t̄1 < t1, then we have that graph(x|[t0, t̄1]) is a compact semianalytic subset
of R × N of dimension 1. Let xi, i = 1, . . . , n, be local analytic coordinates centred at x(t0)

therefore xi(t0) = 0 for i = 1, . . . , n. Without loss of generality we can assume that xi(t)

is defined for all i = 1, . . . , n and all t ∈ [t0, t̄1]. For some index, say j ∈ {1, . . . , n}, we
must have that xj (t) is not a constant. We are going to show that there exists t2 ∈ (t0, t̄1] such
that xj : [t0, t2] → R satisfies certain conditions from which the lemma follows. Since xj (t)

is the projection on the j -coordinate axis of the curve x|[t0, t̄1], that is, xj = pj ◦ x, using
lemma 5.6(c) we have that xj |[t0, t̄1] is an as-curve in R and, moreover, graph(xj |[t0, t̄1]) ⊆
R × R is a semianalytic compact subset of dimension 1. The restriction to graph xj of
the projection p2 : R × R → R onto the second factor satisfies p2(t, xj (t)) = xj (t), for
all t ∈ [t0, t̄1]. Then according to lemma 3.4 of [15] graph(xj |[t0, t̄1]) is a finite union of
connected smooth semianalytic subsets A such that rank(p2|A) is constant on A, and it is easy
to show that rank(p2|A) can take only the values 0 or 1. It is also easy to see that for at least
one such A one must have that rank(p2|A) = 1, p2(A) = xj ((t0, t2)) for some t2 ∈ (t0, t̄1] and
p2(A) = p2(A) = xj ([t0, t2]), and therefore that xj ((t0, t2)) is an open interval. Moreover
xj |[t0, t2] is injective, and we have that x−1

j : xj ((t0, t2)) → (t0, t2) is analytic and also its graph
is a semianalytic subset of R×R and then, because of lemma 5.4(b), that there is an extension
x−1

j : xj ([t0, t2]) → [t0, t2] which is continuous, and therefore xj |[t0, t2] : [t0, t2] → xj ([t0, t1])

is an homeomorphism. Let t (s), s ∈ [xj (t0), xj (t2)], be the map x−1
j . Then we have

that x([t0, t2]) = {(x1, . . . , xn) : xi = xi(t (s)), s ∈ [xj (t0), xj (t1)], i = 1, . . . , n} and also
x((t0, t2)) = {(x1, . . . , xn) : xi = xi(t (s)), s ∈ (xj (t0), xj (t1)), i = 1, . . . , n}. Using this we
can easily deduce the assertion of the lemma for the case of an as-curve x : [t0, t1) → N . The
case of an as-curve x : (t0, t1] → N can be proven in an entirely similar way. �

Lemma 5.8. Let x(t), t ∈ [t0, t1) be an as-curve in N, which is not a constant. Then there is
a t2 ∈ (t0, t1) such that x([t0, t2)) − {x(t0)} is nonempty and locally connected at x(t0), more
precisely, x((t0, t3)) is a neighbourhood of x(t0) in x([t0, t2)) − {x(t0)}, for all t3 ∈ (t0, t2).
Moreover, t2 can be chosen such that x : [t0, t2] → x([t0, t2]) is an homeomorphism, x((t0, t2))



Desingularization of implicit analytic differential equations 10995

is an analytic submanifold which is a semianalytic subset of N and x : (t0, t2) → x((t0, t2)) is
an analytic diffeomorphism. A similar result holds for an as-curve x(t), t ∈ (t0, t1], in M.

Proof. We can show using lemma 5.7 that there exists a t2 ∈ (t0, t1) such that x|[t0, t2]
is injective, and that x|[t0, t2] is an homeomorphism onto its image and that x : (t0, t2) →
x((t0, t2)) is an analytic diffeomorphism where x((t0, t2)) is an analytic submanifold. In
particular, we have that x(t) �= x(t0) for all t ∈ (t0, t2]. Let r > 0 small be given. Working
in local analytic coordinates centred at x(t0) we can show that continuity of x(t) implies
that there exists tr ∈ (t0, t2] such that x([t0, tr ]) ⊆ Br(x(t0)). It can be easily shown that
x([t0, tr )) − {x(t0)} = x((t0, tr )) is connected. Moreover, for each s ∈ [t0, tr ) there is an open
ball Bδ(x(s)) ⊆ Br(x(t0)), with δ = δ(s), such that Bδ(x(s)) ∩ x([tr , t2]) = ∅. Then the
open set

W =
⋃

s∈[t0,tr )

Bδ(x(s))

satisfies W ⊆ Br(x(t0)) and W ∩ (x([t0, t2)) − {x(t0)}) = x((t0, tr )). This shows that
x([t0, t2)) − {x(t0)} is nonempty and locally connected at x(t0) and also that x((t0, tr )) is a
neighbourhood of x(t0) in x([t0, t2)) − {x(t0)}. Now for each t3 ∈ (t0, tr ] take

Wt3 =
⋃

s∈[t0,t3)

Bδ̄(x(s))

where δ̄ = δ̄(t3, s) and Bδ̄(x(s)) satisfies Bδ̄(x(s)) ⊆ Br(x(0)) and x([t3, t2])∩Bδ̄(x(s)) = ∅.
Then x((t0, t3)) = Wt3 ∩ (x([t0, tr )) − {x(t0)}). This shows that x((t0, t3)) is a neighbourhood
of x(t0) in x([t0, tr )) − {x(t0)}. The proof of this part of the lemma follows by lowering the
value of t2, namely, by taking t2 := tr . The case of an as-curve x(t), t ∈ (t0, t1], in M can be
proven in an entirely similar way. �

Inspired by lemma 6.3 of [15] we will prove the following result about the image and
reparametrization of an as-curve.

Lemma 5.9. Let x(t) ∈ M, t ∈ [t0, t1), be an as-curve in M. Then there is an as-curve z(s), s ∈
(s0 −δ1, s0 +δ2), in M, for some δ1, δ2 > 0 such that z(s0) = x(t0), z([s0, s0 +δ2)) = x([t0, t2))
for some t2 ∈ (0, t1) and we also have that t2 and s0+δ2 are such that x|[t0, t2) and z|[s0, s0 + δ2)

are homeomorphisms onto z([s0, s0 +δ2)) = x([t0, t2)), x|(t0, t2) and z|(s0, s0 +δ2) are analytic
diffeomorphisms onto z((s0, s0 + δ2)) = x((t0, t2)) which is an analytic submanifold which is
also a semianalytic subset. Moreover, (x|(t0, t2))−1 ◦ (z|(s0, s0 + δ2)) : (s0, s0 + δ2) → R is an
as-curve in R which is an analytic diffeomorphism onto its image (t0, t2). Also, t2 can be chosen
such that for each t3 ∈ (t0, t2], x((t0, t3)) is a neighbourhood of x(t0) in x([t0, t2)) − {x(t0)}.
Similar results hold for as-curves x(t) in M, where t ∈ (t0, t1].

Proof. Using lemma 5.8 and also lemma 6.3 of [15], we can conclude that there is
an as-curve z(s), s ∈ (s0 − δ1, s0 + δ1), in M, for some δ1, δ2 > 0 such that z(s0) =
x(t0), z([s0, s0 + δ2)) = x([t0, t2)) for some t2 ∈ (0, t1) satisfying all the conditions stated
in lemma 5.8. Since we can also apply lemmas 5.5 and 5.8 to z(s) we can also deduce
that t2 and δ2 can be chosen such that x|[t0, t2) and z|[s0, s0 + δ2) are homeomorphisms onto
z([s0, s0 + δ2)) = x([t0, t2)), x|(t0, t2) and z|(s0, s0 + δ2) are analytic diffeomorphisms onto
z((s0, s0 + δ2)) = x((t0, t2)) which is an analytic submanifold which is also a semianalytic
subset. Moreover, (x|(t0, t2))−1 ◦ (z|(s0, s0 + δ2)) : (s0, s0 + δ2) → R is an as-curve in R which
is an analytic diffeomorphism onto its image (t0, t2). The rest of the proof can be performed
in a similar way. �
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5.2. Solutions to IDE: as-solutions

Now we introduce the notion of solution to a given IDE which is convenient for the purposes
of the present paper.

Definition 5.10. An as-solution x(t), t ∈ [t0, t1), in M to a given IDE (a, f ) in M is an
as-curve in M which satisfies (a, f ) for all t ∈ (t0, t1), that is, a(x(t))ẋ(t) = f (x(t)), for all
t ∈ (t0, t1). Similar statements hold for as-solutions x(t) in M where t ∈ (t0, t1], t ∈ (t0, t1)

or t ∈ [t0, t1] with t0 �= t1.

5.3. Lifted and projected solutions

We have the following result.

Lemma 5.11. (a) Let y(t), t ∈ [t0, t1), (t ∈ (t0, t1], ) be a given as-solution in Mk to the system
(ak, fk) described in section 3, for some k = 1, 2, . . . , q. Then for each t2 ∈ (t0, t1), y(t) is
projected via πk−1 into an as-solution x(t) to the system (ak−1, fk−1), x(t) = πk−1(y(t)), t ∈
[t0, t2] (respectively, t ∈ [t2, t1]), in Mk−1.

(b) Assume that we have an as-solution y(t), t ∈ [t0, t1), (t ∈ (t0, t1]), in Mk , for
some k = 1, 2, . . . , q, to the system (ak, fk) described in section 3. Then for each
s = 0, . . . , k − 1, y(t) is projected via πs ◦ · · · ◦ πk−1 into an as-solution x(t) to the system
(as, fs), x(t) = πs ◦ · · · ◦ πk−1(y(t)), t ∈ [t0, t2] (respectively, t ∈ [t2, t1],), in Ms , for each
t2 ∈ (t0, t1).

Proof. Part (a) is easy to prove using the fact that πk−1 is an analytic map, and also
lemma 5.6(c). Part (b) follows using (a). �

We can deduce, from the previous lemma, that if y(t), t ∈ [t0, t1) is an as-solution to
(ak, fk) in Mk , for some k = 1, . . . , q and x(t) = πs◦, . . . , πk(y(t)) is an as-curve in Ms , for
some s = 1, . . . , k − 1, then x(t), t ∈ [t0, t2] is an as-solution to (as, fs) for each t2 ∈ (t0, t1).
We will call y(t) a lifted as-solution of x(t), and x(t) the projected as-solution of y(t). A
similar definition holds for the case of as-solutions y(t), t ∈ (t0, t1], t ∈ (t0, t1), t ∈ [t0, t1].

Now we shall state and prove one of our main results.

Theorem 5.12. (a) Let y(t), t ∈ [t0, t1) (respectively, t ∈ (t0, t1]) be an as-solution to (ak, fk)

in Mk, k = 1, . . . , q. Then x(t) = πk−1(y(t)), t ∈ [t0, t2] (respectively, t ∈ [t2, t1]) is an
as-solution to (ak−1, fk−1) in Mk−1, for each t2 ∈ (t0, t1).

(b) If x(t), t ∈ [t0, t1) (respectively, t ∈ (t0, t1]) is an as-solution to (ak−1, fk−1) in Mk−1

such that x(t) ∈ Mk−1
0 , t ∈ [t0, t1) (respectively, ∈ (t0, t1]), k = 1, . . . , q then there exists

t2 ∈ (t0, t1) and a lifted as-solution y(t), t ∈ [t0, t2] (respectively, t ∈ [t2, t1]) of x|[t0, t2]
(respectively, x|[t2, t1]) to (ak, fk) in Mk . In particular, x(t) = πk−1(y(t)), t ∈ [t0, t2]
(respectively, t ∈ [t2, t1].)

Proof. We are going to give a detailed proof of the case k = 1 only, since the cases k = 2, . . . , q

can be proven in an entirely similar way. Part (a) is an easy consequence of lemma 5.11. In
order to prove (b) we are going to prove first several facts, (i), (ii), (iii), (iv) and (v), below.
These facts will be proven under the assumption that x(t) ∈ M0, t ∈ [t0, t1], is an as-solution
to (a, f ) in M, the curve x(t) is simple, that is, x(a) �= x(b) for all a, b ∈ [t0, t1] such that
a �= b, and moreover, x : [t0, t1] → x([t0, t1]) is an homeomorphism and also x((t0, t1)) is
an analytic submanifold and x|(t0, t1) : (t0, t1) → x((t0, t1)) is an analytic diffeomorphism.
We can assume without loss of generality (for instance, using Whitney embedding theorem)
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that M ⊆ U and M1 ⊆ V are analytic submanifolds of U and V , where U and V are real
finite-dimensional vector spaces.

(i) The map π0 can be described as the restriction p|(graph π0) to graph π0 ⊆ V × U of the
projection onto the second factor p : V ×U → U . Since p|(graph π0) is a proper analytic
map we have that (p|(graph π0))

−1(x([t0, t1])) ⊆ graph π0 is a compact semianalytic
subset of V ×U , therefore, according to lemma 3.4 of [15] it is a finite union of relatively
compact connected smooth semianalytic subsets A such that for each A rank(p|A) is
constant on A. Since dim(x([t0, t1]) = 1, it is easy to see that for each A rank(p|A) is 0
or 1, and moreover, x([t0, t1]) is the union of those p(Ā) such that p|A has rank 1 and
therefore p(Ā) is not a point.

(ii) Let α ∈ [t0, t1] be fixed. Then there is an A, say A = A0, such that x(α) ∈ p(Ā0).
Since Ā0 is connected and compact and the curve x(t), t ∈ [t0, t1], is simple, we have that
p(Ā0) is homeomorphic to a closed interval (possibly of zero length) via the curve x, say
p(Ā0) = x([a1, a2]), where [a1, a2] ⊆ [t0, t1]. We can assume without loss of generality
that p(Ā0) is homeomorphic to a closed interval of nonzero length.

(iii) By using theorem 6.10 of [15] we can see that for given points qi ∈ p−1(x(ai))∩ Ā0, i =
1, 2, we have q1 �= q2, and there is a continuous semianalytic curve w(s), s ∈ [s0, s1], in
Ā0 such that w(si) = qi+1, i = 0, 1. Then w([s0, s1]) is a compact semianalytic subset
of V × U of dimension 1 and we have p(w([s0, s1])) = x([a1, a2])]. Using lemma 3.4
of [15] we see that since w([s0, s1]) has dimension 1 it is a finite union of relatively
compact connected smooth semianalytic subsets B of dimension less or equal than 1,
such that the restriction of the projection p|B has locally constant rank of value 0 or 1.
Since each B̄ is connected and compact we have that p(B̄) is homeomorphic to a closed
interval, say p(B̄) = x([aB, bB ]). For at least some B such that p(B̄) is not a point one
must have that p(B̄) contains the point x(α). Observe that p(B) = x((aB, bB)) is an
analytic submanifold which is a subanalytic subset and that p|B : B → x((aB, bB))

is an analytic diffeomorphism. This gives, in particular, a parametrization of the
analytic submanifold B, namely, z(t) = (p|B)−1(x(t)), t ∈ (aB, bB). We can give a
definition of graph((p|B)−1 ◦ x) as a subanalytic subset of R × M1 × M as follows.
We have graph((p|B)−1 ◦ x) = {(t, z) ∈ R × M1 × M : z ∈ B,p(z) = x, (t, x) ∈
graph(x|(aB, bB))}, which defines graph((p|B)−1 ◦ x) by subanalytic conditions, since B
is a semianalytic subset of M1×M , graph x is a subanalytic subset of R×M , by definition,
and graph(x|(aB, bB)) = {(t, x) ∈ R × M : (t, x) ∈ graph x, t ∈ (aB, bB)}. Then using
lemma 5.2(a) we can deduce that there is a uniquely defined continuous extension, which
we will call z by a slight abuse of notation, z(t), t ∈ [aB, bB ], whose image is the
semianalytic subset B̄ = z([aB, bB ]), which is an as-curve in M1 × M . We have, in
particular, that z(t), t ∈ [aB, bB], is an as-curve such that p(z(t)) = x(t), t ∈ [aB, bB ]. It
is clear that the extension z(t), t ∈ [aB, bB ], is given by (p|B̄)−1 ◦ x.

(iv) Assume that x(α) ∈ p(B). We have the as-curve z(t) = (y(t), x(t)), t ∈ [aB, bB ],
in graph(π0), therefore p(z(t)) = x(t), for t ∈ [aB, bB ], then the curve y(t) satisfies
π0(y(t)) = x(t), t ∈ [aB, bB ]. Using this it becomes clear from the definition of
(a1, f1) that y(t) satisfies the system (a1, f1), for t ∈ (aB, bB). We have that, for
any [α−ε1, α +ε2] ⊆ [aB, bB ], where ε1, ε2 � 0, the curve y(t), t ∈ [α−ε1, α +ε2], is an
as-curve in M1. In fact, this is a direct consequence of lemma 5.6(c), since the projection
q : M1 × M → M1 is an analytic map. It is clear that y(t), t ∈ (α − ε1, α + ε2) satisfies
the system (a1, f1).

(v) Assume now that x(α) ∈ p(B̄) − p(B), then α = aB or α = bB . If α = aB (respectively
α = bB) we can proceed in a similar way as we did in (iv) and we have an as-curve
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z(t) = (y(t), x(t)), t ∈ [α, α + ε2] (respectively, t ∈ [α − ε1, α]) in graph(π0), then, in
particular, p(z(t)) = x(t), t ∈ [α, α + ε2] (respectively, t ∈ [α − ε1, α)]. Then the curve
y(t) = q(z(t)) satisfies π0(y(t)) = x(t), t ∈ [α, α + ε2] (respectively, t ∈ [α − ε1, α])
and is an as-curve. It is clear that y(t), t ∈ (α, α + ε2) (respectively t ∈ (α − ε1, α)),
satisfies the system (a1, f1).

We are going to prove (b). If x(t) = x(t0) is a constant then it can be lifted to a constant
curve y(t) = y(t0), where y(t0) ∈ π−1

0 (x(t0)), which solves the problem, so let us assume
that x(t) is not a constant. By conveniently lowering the value of t1 we can assume without
loss of generality that x(t) ∈ M0, t ∈ [t0, t1], is an as-solution to (a, f ) in M. Moreover,
by lowering the value of t1 if necessary and using lemma 5.7 we can assume that the curve
x(t) is simple, that is x(a) �= x(b) for all a, b ∈ [t0, t1] such that a �= b, and moreover,
that x : [t0, t1] → x([t0, t1]) is an homeomorphism onto x([t0, t1]), x((t0, t1)) is an analytic
submanifold of M and x|(t0, t1) : (t0, t1) → x((t0, t1)) is an analytic diffeomorphism. By using
(v) with α = t0, we must have aB = t0 and then the proof of (b) follows by taking α + ε2 = t2.
The case of an interval (t0, t1] can be proved in an entirely similar way. �

Theorem 5.12 proves that an as-solution x(t), t ∈ [t0, t1), to a given IDE (a, f ) with domain M
and range F can be lifted to an as-solution y(t), t ∈ [t0, t2], in M̃2 to the lifted system (ã2, f̃ 2),
for some t2 ∈ (t0, t1), and a similar result holds for as-solutions of the type x(t), t ∈ (t0, t1].

5.4. Normal as-solutions

Let x(t), t ∈ [α, β] be an as-solution to (ak, fk) in Mk , for some k = 0, . . . , q − 1. If for
some s0 ∈ [α, β] we have x(s0) ∈ Mk

2 then we must have that there is at most a finite number
of t ∈ [α, β], say α � t1 < · · · < tr � β, such that x(ti) ∈ Mk

0 . This is because Mk
0 is defined

by analytic equations. In this case we will call x a normal as-solution to (ak, fk) in Mk . It is
clear that if an as-solution x(t), t ∈ [α, β] to (a, f ) in Mk is not normal then x(t) ∈ Mk

0 for
all t ∈ [α, β].

The following corollary can be obtained by repeated application of part (b) of
theorem 5.12.

Corollary 5.13. Let x(t), t ∈ [t0, t1) (respectively, t ∈ (t0, t1]) be an as-solution to (ak−1, fk−1)

in Mk−1 such that x(t) ∈ Mk−1
0 , t ∈ [t0, t1) (respectively, t ∈ (t0, t1]), k = 1, . . . , q.

Then there exists t2 ∈ (t0, t1) and a lifted normal as-solution y(t), t ∈ [t0, t2] (respectively,
t ∈ [t2, t1]) of x|[t0, t2] (respectively, x|[t2, t1]) to (ar , fr) in Mr , for some r � k, in particular,
x(t) = πk−1 ◦ · · · πr−1(y(t)), t ∈ [t0, t2] (respectively, t ∈ [t2, t1].)

5.5. Reparametrization and extension of solutions

First we shall define the notion of a reparametrization in the context of as-curves. A
reparametrization of an as-curve x(t), t ∈ [t0, t1), in M, is a change of variables t = τ(s), s ∈
[s0, s1), (s ∈ (s1, s0]) such that τ : [s0, s1) → R (respectively, τ : (s1, s0] → R) is an as-curve in
R which is also an homeomorphism onto [t0, t1) such that τ(s0) = t0 and τ |(s0, s1) : (s0, s1) →
(t0, t1) (respectively, τ : (s1, s0) → (t0, t1)) is an analytic diffeomorphism. It is easy to prove
that in this case the composition (x◦τ)(s), s ∈ [s0, s1) (respectively, s ∈ (s1, s0]) is an as-curve
in M. Similar definitions and results hold for the case of as-curves x(t) whose domain is an
interval of the type (t0, t1], (t0, t1), [t0, t1].

Let (a, f ) be a given IDE with domain M and range F. By definition, (a, f ) is
homogeneous if f = 0. It is clear that if x(t), t ∈ [t0, t1) is a given as-solution to
an homogeneous system (a, 0) and t = τ(s), s ∈ [s0, s1) (s ∈ (s1, s0]) is a given
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reparametrization then the curve y(s) ≡ x ◦ τ(s), s ∈ [s0, s1) (respectively, s ∈ (s1, s0])
is also an as-solution to (a, 0). More generally, if (a, f ) is not necessarily homogeneous
then y(s) satisfies a(y(s))ẏ(s) = (dτ/ds)f (y(s)), s ∈ (s0, s1)(respectively, s ∈ (s1, s0)) or,
using a different and also standard notation, a(y(s))ẏ(s) = ṫ (s)f (y(s)), s ∈ (s0, s1)

(respectively, s ∈ (s1, s0)). Similar results hold for the case of as-curves whose domain
is an interval of the type (t0, t1], (t0, t1), or [t0, t1].

Theorem 5.14. (a) Let (a, 0) be a given homogeneous IDE with domain M and range F. Let
x+(t), t ∈ [t0, t1), be an as-solution to (a, 0) in M, which is not a constant. Then there is an
as-solution z(s), s ∈ (s0 − δ1, s0 + δ2), in M, for some δ1, δ2 > 0, satisfying all the conditions
stated in lemma 5.9 with respect to x+(t), t ∈ [t0, t1).

(b) Let (a, f ) be a given IDE with domain M and range F. Let x+(t), t ∈ [t0, t1),
be an as-solution to (a, f ) in M which is not a constant. Then there is an as-curve
z(s), s ∈ (s0 − δ1, s0 + δ2), in M, for some δ1, δ2 > 0, not necessarily a solution, satisfying
all the conditions stated in lemma 5.9, as we have explained in (a), and, besides, the as-curve
z(s), s ∈ [s0, , s0 + δ2), satisfies the equation a(z(s))ż(s) = ṫ (s)f (z(s)), s ∈ (s0, s0 + δ2), with
ṫ (s) > 0, s ∈ (s0, s1). Similar results hold for as-solutions of the type x−(t), t ∈ (t0, t1].

(c) Let (a, f ) be a given IDE with domain M and range F. Let x+(t), t ∈ [t0, t1), be
an as-solution to (a, f ) in M which is not a constant and let z(s) be as in (b). Then
by conveniently increasing the values of δ1 and δ2 if necessary, we have the following.
There is an as-solution x−(t), t ∈ (t2−, t0] to some of the systems (a,±f ) in M such that
x−(t0) = x+(t0) = z(s0), and x−|(t2−, t0] and z|(s0 − δ1, s0] are homeomorphisms onto
z((s0 − δ1, s0]) = x−((t2−, t0]), x−|(t2−, t0) and z|(s0 − δ1, s0) are analytic diffeomorphisms
onto z((s0 − δ1, s0)) = x−((t2−, t0)), which is an analytic submanifold which is also a
semianalytic subset. Moreover, (x−|(t2−, t0))

−1 ◦ (z|(s0 − δ1, s0)) : (s0 − δ1, s0) → R is
an as-curve in R which is an analytic diffeomorphism onto its image (t2−, t0). We also have
that t2− can be chosen such that for each t3− ∈ (t2−, t0], x−((t3−, t0)) is a neighbourhood of
x−(t0) in x−((t2−, t0]) − {x−(t0)}. The as-curve z(s), s ∈ [s0, s0 + δ2), satisfies the equation
a(z(s))ż(s) = ṫ (s)f (z(s)), s ∈ (s0, s0 + δ2), where ṫ (s) > 0, s ∈ (s0, s0 + δ2). The as-curve
z(s), s ∈ (s0 − δ1, s0], satisfies the equation a(z(s))ż(s) = ṫ (s)f (z(s)), s ∈ (s0 − δ1, s0),
where ṫ (s) > 0 if x−(t) satisfies (a, f ) and ṫ (s) < 0 if x−(t) satisfies (a,−f ). Similar results
hold for as-solutions x−(t), t ∈ (t0, t1].

Proof. Parts (a) and (b) are a direct consequence of lemma 5.9. To prove part (c)
consider the homogeneous IDE (α, 0) with domain R × M and range F where α(t, x)(ṫ , ẋ) =
a(x)ẋ− ṫf (x). Consider the solution (t (s), z(s)), s ∈ (s0, s0 + δ2) to the homogeneous system
(α, 0) where z(s), s ∈ (s0 − δ1, s0 + δ2) is the as-curve considered in (b). Since we know from
(b) that a(z(s))ż(s) and f (z(s))) are linearly dependent for s ∈ (s0, s1) we can conclude,
using the analyticity of z(s), s ∈ (s0 − δ1, s0 + δ2), that they must also be linearly dependent
for s ∈ (s0 − δ1, s0 + δ2). We can also show, by using lemma 5.8, that there exist δ1 such that
z((s0 − δ1, s0]) − {z(s0)} is nonempty and locally connected at z(s0), more precisely, z((s0 −
δ3, s0]) is a neighbourhood of z(s0) in z((s0 − δ1, s0]) − {z(s0)} for all s0 − δ3 ∈ (s0 − δ1, s0).
Moreover, δ1 can be chosen such that z|[s0 − δ1, s0] : [s0 − δ1, s0] → z([s0 − δ1, s0]) is an
homeomorphism, z((s0 − δ1, s0)) is an analytic submanifold which is a semianalytic subset of
M and z : (s0 −δ1, s0) → z((s0 −δ1, s0)) is an analytic diffeomorphism. Since we have a linear
dependence between a(z(s))ż(s) and f (z(s)), s ∈ (s0 − δ1, s0 + δ2), we have several cases.
Assume first that a(z(s))ż(s) = 0, s ∈ (s0, s0 + δ2). Then since ṫ (s) �= 0, s ∈ (s0, s0 + δ2) we
can conclude that f (z(s)) = 0, s ∈ (s0, s0 + δ2). By analyticity of z(s), s ∈ (s0 − δ1, s0 + δ2)

we obtain that a(z(s))ż(s) = 0 and f (z(s)) = 0, s ∈ (s0 − δ1, s0 + δ2). Then to prove (c) in
this case we can simply take t = s − s0 + t0, t2− = −δ1 + t0 and x2−(t) = z(t + s0 − t0).
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We can proceed in a similar way if we assume that f (z(s)) = 0, s ∈ (s0, s0 + δ2). Let us
consider now the case where a(z(s))ż(s), s ∈ (s0, s0 + δ2), is not identically 0. We are going
to show that, after conveniently diminishing the value of δ1 if necessary, there exists a unique
as-curve in R, λ : (s0 − δ1, s0) → R, such that a(z(s))ż(s) = λ(s)f (z(s)), s ∈ (s0 − δ1, s0).
First one should take into account that z(s), s ∈ (s0 − δ1, s0 + δ2), is analytic then so are
f (z(s)) and a(z(s))ż(s), s ∈ (s0 − δ1, s0 + δ2), and therefore they have at most a finite
number of isolated zeros in a neighbourhood of s0. It is easy to see from the equation
a(z(s))ż(s) = λ(s)f (z(s)), s ∈ (s0 − δ1, s0 + δ2), that λ(s), or rather its extension for
complex s, is a meromorphic function in a neighbourhood of s0. On the other hand, since
λ(s) = ṫ (s), s ∈ (s0, s0 + δ1), where t (s) is bounded, we have that λ(s) cannot have a pole at
s0 therefore it must be analytic in a neighbourhood of s0. This implies that by conveniently
increasing the values of δ1 and δ2 if necessary, we have that λ(s), s ∈ (s0 − δ1, s0 + δ2), is real
analytic. By conveniently increasing the value of δ1 if necessary we can assume without loss of
generality that λ(s) �= 0, s ∈ (s0 − δ1, s0). Let us assume first that λ(s) > 0, s ∈ (s0 − δ1, s0).
Then the result follows by taking t = t (s), s ∈ (s0 −δ1, s0), such that dt/ds = λ(s), t (s0) = t0
and t (s0 − δ1) = t2−, which defines t (s), s ∈ (s0 − δ1, s0] as an as-curve in R and also t2−.
In fact, since λ(s) > 0, s ∈ (s0 − δ1, s0), we have that t (s) is an analytic diffeomorphism
from (s0 − δ1, s0) onto (t2−, t0) which is an as-curve, while t : [s0 − δ1, s0] → [t2−, t0] is an
homeomorphism. Then we can define x2−(t) by x2−(t) = z(s(t)) where s(t) is the inverse of
t (s). The rest of the proof can be performed in a similar way. �

The previous theorem says, in particular, that an as-solution x+(t), t ∈ [t0, t1), to a given
IDE (a, f ) gives rise to an as-solution x−(t), t ∈ (t2−, t0] such that x+(t0) = x−(t0) and
graph x− ∪ graph x+ = graph z for some as-curve (z(s), t (s)), s ∈ (s0 − δ1, s0 + δ2), which is
a solution to the homogeneous system a(z)ż = ṫf (z), s ∈ (s0 − δ1, s0) ∪ (s0, s0 + δ2), and x−,
x+ are reparametrizations of z|(s0 − δ1, s0], z|[s0, s0 + δ2).
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